3.350 \(\int \frac{\sec ^2(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=27 \[ \frac{2 i}{a d \sqrt{a+i a \tan (c+d x)}} \]

[Out]

(2*I)/(a*d*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0646933, antiderivative size = 27, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.077, Rules used = {3487, 32} \[ \frac{2 i}{a d \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(2*I)/(a*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 3487

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[1/(a^(m - 2)*b
*f), Subst[Int[(a - x)^(m/2 - 1)*(a + x)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x
] && EqQ[a^2 + b^2, 0] && IntegerQ[m/2]

Rule 32

Int[((a_.) + (b_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^(m + 1)/(b*(m + 1)), x] /; FreeQ[{a, b, m}, x] && N
eQ[m, -1]

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x)}{(a+i a \tan (c+d x))^{3/2}} \, dx &=-\frac{i \operatorname{Subst}\left (\int \frac{1}{(a+x)^{3/2}} \, dx,x,i a \tan (c+d x)\right )}{a d}\\ &=\frac{2 i}{a d \sqrt{a+i a \tan (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.143462, size = 27, normalized size = 1. \[ \frac{2 i}{a d \sqrt{a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(2*I)/(a*d*Sqrt[a + I*a*Tan[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 0.032, size = 24, normalized size = 0.9 \begin{align*}{\frac{2\,i}{ad}{\frac{1}{\sqrt{a+ia\tan \left ( dx+c \right ) }}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

2*I/a/d/(a+I*a*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [A]  time = 1.09316, size = 28, normalized size = 1.04 \begin{align*} \frac{2 i}{\sqrt{i \, a \tan \left (d x + c\right ) + a} a d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

2*I/(sqrt(I*a*tan(d*x + c) + a)*a*d)

________________________________________________________________________________________

Fricas [B]  time = 2.12964, size = 130, normalized size = 4.81 \begin{align*} \frac{\sqrt{2} \sqrt{\frac{a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}{\left (i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i\right )} e^{\left (-i \, d x - i \, c\right )}}{a^{2} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(I*e^(2*I*d*x + 2*I*c) + I)*e^(-I*d*x - I*c)/(a^2*d)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{2}{\left (c + d x \right )}}{\left (a \left (i \tan{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**2/(a*(I*tan(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{2}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^2/(I*a*tan(d*x + c) + a)^(3/2), x)